Developmental biology and reproductive medicine

Developmental biology and reproductive medicine

Following implantation, the cluster of mouse epiblast cells undergoes rapid proliferation and expansion to form a cup-shaped single-layer epithelium. The pluripotency of the epiblast cells gradually becomes restricted with time and gastrulation commences, which is a fundamental morphogenetic process that generates three germ layers including naïve ectoderm, mesoderm and endoderm. Our goal is to understand how this dynamic process is regulated at transcriptional level.

During the gastrulating, primordial germ cells are spared from other somatic cells and form a small tight cluster at the base of allantois. BMP signaling is crucial during this specification but little is known why so only very few epiblast cells respond to the signaling. We are also interested in how the migration of primordial germ cells are coordinated and how stray primordial germ cells are eliminated. Moreover, we are also interested in the transgenerational inheritance due to the impact of maternal diet and physiological/pathological condition.

In order to answer all these questions, we combine both the molecular and genetic analysis of mouse models with state-of-the-art technologies including single-cell sequencing and CRISPR/Cas9 screening. We also employ embryonic stem cell culture as a tool to reconstitute developmental process in vitro.

GruppChefPortlet

Team leader

Qiaolin Deng

E-mail

qiaolin.deng@ki.se

Job title

Assistant Professor

House

L8:05

GroupInformationPortlet

Research

Developmental biology and reproduction

Competence/titles

Sequencing